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Abstract—Under the condition of network operation of high-
speed railway, the influence of disruptions on the train scheduling
at the current line and related lines is more and more significant.
For the multi-region high-speed railway scheduling, the process of
network operation and constraint is complex, which leads to a not
accurate model. The method of simulation can get an accurate
model and evaluate global indicators effectively, but the
simulation and optimization process of large-scale high-speed
railway network is expensive and time-consuming with the ever-
expanding high-speed railway network and intensive High-speed
railway traffic. The paper proposes a surrogate model to replace
high-speed railway network simulation for low-cost evaluation,
which effectively reduces the expense of simulation.

Keywords—high-speed railway, surrogate model, large-scale,
network, expensive simulation, low-cost

I. INTRODUCTION

As the scale of the high-speed railway network continues to
expand, the railway network is becoming more complex, with a
high traffic density, and the transportation capacity of important
hub sections such as Xuzhou-Bengbu is close to saturation.
Affected by unexpected events such as rain, snow, and
equipment failures, a single point of the road network is delayed.
Because the lines are more closely connected to each other and
the coupling between the dispatching stations is stronger, the
driving conflicts of a single dispatching station will also be
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spread to other dispatching regions [1]. The delayed train should
be made to minimize the delay or even resume the scheduled
operation plan, to minimize the impact of the delay on the road
network. Nowadays, the dispatching effect is obviously affected
by human factors, and the coordination ability is poor and the
efficiency is low. The use of computer-assisted dispatchers to
optimize the decision-making of the road network is one of the
development trends of high-speed rail dispatching technology

(2].

Scheduling is usually an NP problem. The larger the scale of
the railway network, the exponential growth of the problem
scale, the more complex the constraint relationship, the more
difficult it is to evaluate the objective function, and the more
difficult it is to solve the optimal strategy. For regional
scheduling problems with multiple scheduling sections, an
overall model can be built for multiple scheduling sections to
achieve overall optimization of the road network, but the
increase in the scale of the problem makes the problem a large-
scale problem, which is difficult to solve. Reference [3]
proposed an improved LaGrange relaxation method for train
rescheduling, which decomposes complex problems into a series
of simpler sub-optimization problems and reduces the number
of constraints in the actual optimization process; Reference [4]
introduced three common models of integer programming,
mixed integer linear programming and alternative graph models
to solve the problem of re-scheduling in railway network. When
the above-mentioned documents solve the scheduling problem
of the railway network, the more complicated the constraints of
the road network, the more difficult it is to consider the
coordination problem between the various dispatching stations
in the road network, and the accuracy of the feasible solution
obtained is difficult to guarantee. Reference [5-7] introduced the
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use of train dispatching system for train rescheduling. The
simulation model is the closest to the real dispatching system.
The feasible solution obtained by it has high accuracy, but it
takes a long time to obtain the feasible solution and it is
expensive to calculate, and poor real-time performance. For the
computationally expensive problem of simulation methods,
reference [8] introduced a method based on off-line data-driven
surrogate model to solve computationally expensive problems,
using surrogate model to assist evolutionary algorithm search to
find the optimal solution for large-scale problems quickly and
accurately. Reference [9] introduces an optimization evaluation
method based on surrogate model, which uses surrogate model
to replace real simulation system for performance evaluation,
thereby greatly shortening the evaluation process of genetic
algorithm. The evaluation process based on surrogate model
performs global optimization search. There are many methods
for constructing surrogate models, such as support vector
machine, neural network, Gaussian process, etc. Reference [10]
uses Gaussian process to build a surrogate model to solve
computationally expensive optimization problems.

We build a surrogate model to replace the simulator to obtain
the true response value, so that the railway network optimization
process can quickly obtain the optimal goal.

II. PROBLEM DESCRIPTION

A. High-Speed Railway Network

Due to intensive High-speed railway traffic, not only the
subsequent trains in this section will be affected by the delay,
but the trains in the subsequent dispatching station will be
delayed or even blocked when a traffic conflict occurs in a
certain section of the railway network. Assuming that the road
network contains N, connected dispatching sections, each
dispatching section is provided with a dispatching station
corresponding to the train dispatching of the section. According
to the position of the dispatching section in the high-speed
railway network, the traffic density and the passenger flow
density, the corresponding weight coefficients
{WI,WZ, ...... ,Wnk}are assigned to each section. Each dispatch
section contains several stations and corresponding inter-station

sections. Suppose the dispatch section k contains J, — 1
sections and J stations, as Qu = {q1, Gz, s @y}, Sk =
{51,52, ...... ,S]k}.

Assuming that there are N, trains running in the railway
network, which is denoted as set T, the dispatching section k
dispatches [, trains, and the corresponding train set is T} =
{1,2,---,i,+++, 1)}, called the train group T;. When the train in
the dispatch section k is delayed, the delay time when the train
group T}, reaches the hub station is represented by the delay
vector X = {xl,xz, ....x,k}, Xy is used to describe the delay
time of a dispatch section when the train is handed over.
Generally, assuming that the dispatching section k is affected by
emergencies, which lead to a long-lasting local traffic
interruption, it is difficult to restore punctual driving only
through the dispatch of this section and it is expected that the
delay time when handing over at the junction station is more
than X¢, as X, = X, x; = X7, %, 2 x3,-+,%;, 2 x7, . After
the train group of dispatching section k is merged with the train
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group T,,, of other dispatching section m in the hub section m +
1, a new train group Ty,4q1 = Ty U T, is formed, which enters
the subsequent dispatching section m + 2,m + 3, -+ working
together. If there are still departure trains or final arrival trains
in the hub section m + 1, increase or decrease correspondingly
on the basis of T;, U T, to form a train group T, .. Since the
train group T, is delayed by more than Dy . If the relevant
dispatching section m, m + 1, etc. belong to busy lines with
dense traffic and small intervals, it is easy to form a conflict
relationship with related trains. In order to meet the safe interval,
it will affect and squeeze the operation space of other trains
resulting in other trains’ associated delays on the operation
diagram. It is shown that the non-delayed trains also have
operation delays, and cannot be operated according to the
scheduled operation line resulting in the exchange of the order,
which is collectively referred to as delayed propagation.

B. Local Area scheduling

When a train is delayed and deviates from the original basic
schedule or daily schedule operation diagram (in this paper, it
will not be distinguished, collectively referred to as the basic
diagram), the dispatcher will follow the train delay, as well as
the line status and equipment conditions, adjust the arrival and
departure time of the affected trains at the stations under this
section, formulate an adjustment schedule, and reduce delays as
much as possible while ensuring the safety of the traffic, so as to
restore the running order as much as possible. The process of
formulating an adjustment schedule is approximately an
optimization decision-making process, and the decision variable
is the arrival and departure time of the train at each station.
Suppose the planned arrival time of train { at station s; in
dispatch section k is al” 7 » and the planned departure time is df]*
Due to the delay, the actual arrival and departure time may be
different from the planned time. The actual departure time is d

l] >
the actual arrival time is af; 5 > then a{‘] a; ]- " represents the
amount of early or late arrival time, negative value is early, and
positive value is late. The delay of the departure time is similarly
defined. The goal of formulating an adjustment schedule is
usually to reduce delays and restore punctuality. Therefore, the
commonly used dispatch objective function is the total delay(TD)
of all trains at all stations in the dispatch region, which can be
expressed as follows:

fi = 25, 2k (aly — aly | + |al — al D) (1
This TD objectlve function reﬂects the dispatch target of
keeping the rescheduled train timetable as close as possible to
the original timetable.

Another commonly used objective function for a dispatch region
is the minimum travelling time (MTT), which is defined as:

Ck = Z (dzjk —af) ()
where implies how much delay has been increased the minimum
actual travelling time. Accordingly, the planned travelling time
is:

C; = Z (dL]k - aL]k) (3)
The Increment Delay (ID), which is defined as the increment

amount of delay in the dispatch region when a train leaves the
region. It can be defined as :
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Hk = Z (dL]k L]k) (ai'(l - ai'(l*)) (4)
Obviously, the 1ncrement delay in the section has the same
practical significance as the travelling time of the section. The
shorter the travelling time, the stronger the passing capacity of
this section.

Usually, the scheduling section where the initial delay
occurs should be the main purpose of restoring punctual
operation, and the objective function f; is adopted and the
objective function c;, should be adopted to improve the passing
capacity for the busy section.

We adopt the local area scheduling objective function (1).
The constraints as follows:

a) Minimum interval running time:

—df;_y = min(aly-df5_,),i €Ty (5)
b) Mmzmum stop time:
d" — af‘] > mm(d *), i €Ty (6)
¢) departure time:
df; = dif @)

d) Departure interval:

dfi —df, j = min(df —df, ;),i €Ty )

C. Multi-region High-Speed Railway Scheduling

Scheduling under the conditions of the railway network,
restoring the punctual operation of the train group T} in the
section k where a traffic conflict occurs should be the main
purpose. The train group T, of other dispatching section m in
the hub section m + 1, a new train group Tp4q = T, U T, is
formed, the number of trains increase, which mainly aimed at
improving passing ability. Therefore, the scheduling objective
function as follows:

F=% Wy fie + 2im WimnCm ©)
where f, is the objective function for region k as the total delay
(TD) and c,, is the objective function for the subsequent
dispatching region m after the region k. wy, is the weight for
each scheduling region k. Constraints are the same as local area
scheduling.

In this paper, we select k = 1,m =n; —1. Due to the
collaborative scheduling between multiple scheduling sections,
f1 1s easy to be evaluated, but ¢, is a large-scale problem which
is difficult to be an accurate model, and the simulation method
is used to solve the problem, however, the simulation
calculation is expensive, so the surrogate model is used for
optimization to solve the c,, of expensive calculation.

III. SURROGATE MODEL AND ACTIVE LEARNING

The Gaussian process (GP) surrogate model is selected in
this paper. The surrogate model built by the GP model can
predict uncertainty well. For a complex high-speed railway
network with many trains and stations, the number of decision
variables are huge and the objective function are highly
nonlinear. As a result, a huge amount of the delay vector X =
{xl,xz, ....x,k}is needed to establish the surrogate model to
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reach a sufficiently accuracy level. Training such as model leads
to expensive calculations.

Sample = o i
itorical |1t (KomsEn) = N L e
tabase (Xns1:Cas1) %
TNo
| Enrich Recommend

| The value X;,4, - Next sample X4,
Simulate |

Fig.1. The process of surrogate model

Therefore, the active learning strategy is added to optimize
the surrogate model. The surrogate model can be obtained with
less sample data and can accurately replace the simulation for f;,
evaluation. An element of the active learning strategy is to
obtain the uncertainty of the model, so the GP can be more well
suited to active learning strategies. Figure 1 shows the process
of adding an active learning strategy to build an accurate
surrogate model.

A. Gaussian Process Model With Active Learning
Let the sample of Gaussian process is denoted by (X, ¢,),

where X,, is the delay vector {xl, Xg, e x,k} and ¢, is the
increment delay (4) when the train group T,,,; enters the
subsequent dispatching section m + 2,m + 3, ---. The input set
and output set constitute a set of random variables, the random
process they form is the Gaussian process, as follows:

c(X)~G(m@X), I (X, X,)) (10)
where m(X) = E(c(X)) is the mean function of c(X) ,
['(X,, X;) is the covariance function, as follows:

F(X,, X)) = 0 exp | =3 (6 = X)TM(X, — X)| (1)

where M = diag[A™2] and = (4,0), which is solved by
maximum likelihood method.

The probability density function of the Gaussian process, as

follows:
( (X—m(X))z) (12)

p( ) - 202

According to the active  learning(AL)  strategy
recommendation, select the sample X; whose current prediction
value c¢(X) can be lower than the current observation
minimum ¢, (X) to the greatest extent, who can be
represented by the expected value E[I(X)] of the random

variable I (X), as follows:

_ Cmin(X) - C(X), C(X) < Cmin(X)
1w =g (X 2 ) P
E[I(X)] = [1(X)p(c(X))d(c(X)) (14)
Simplify as follows:
ELLCOT = (i () = m(L))® (L2E—ED) 4
o (Cmin();)_ C(X)) (15)

where @ and ¢ are the cumulative distribution function and
probability density function of the normal distribution.
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B. Algorithm Implementation

The construction process of the surrogate model with the
active learning strategy is shown in Figure 2. Continuously
recommend sample X,,; through active learning and use
simulation to give recommended samples L., increase of
delay time c(X,41). Using simulation to continuously give
recommended samples (X1, ¢(X,41)) to enrich the sample
data to update the surrogate model, which solves the demand of
more samples. Using fewer samples, which means less
computational cost, builds the surrogate model which can
accurately give the value c and participate in railway network
optimization, speeds up railway network optimization.

Init
Timetable
Scene
I
Sample Enrich the
(X G sample by
(Xn+1:Cne1) (X1 Cn)
Build the Simulate the
surrogate model value ¢4 of
Xps1
Get the Recommend
value I(X) the sample of
and E[I(L)] EI(O)max | Active
of ¢(X) RN,

Learning

Fig.2. The surrogate model with the active learning strategy

IV. EXPERIMENT

In order to verify whether the surrogate model of the active
learning strategy in this paper can accurately replace the high-
speed railway network simulation and participate in the
optimization and adjustment of trains in the network, 16 high-
speed railway trains in Shenyang North-Changchun, as shown
in Figure 3, are selected as follow-up dispatchers The section is
the scenario where the surrogate model replaces the simulation
evaluation of the simulator, and the evaluation index is
increment delay of the scheduling section.

076
Shen Yang 1265 1;41 1237 4*;01%5 28078 803701 711

Tie Ling
Kai Yuan
Chang Tu
Si Ping
Gong Zhuling
Chang Chun

14:00 15:00 16:00 17:00 18:00

Fig.3. Train plan operation diagram

A. Scene I

When two of the trains entered the area were delayed, the
train 1237 was in the late range of Shenyang North Station (5,
30), and the train 4031 was in the late range of Shenyang North
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Station (5, 30). To verify the accuracy of the model, the two
delayed real target value of all the train delays is obtained by the
simulator, a total of 676 sample data, the map of the real target
value is shown in Figure 4, the minimum value of the delay
increment is 0.

Extract 25 initial delay vectors evenly at equal intervals, and
update the model 3 times according to the active learning
strategy. Finally, the more accurate prediction results of the
surrogate model are obtained. The projection map is shown in
Figure 5.

30 T 220

25 / | 180

20

Fig.4. The map of the real target value

According to Figures 4 and 5, the overall effect of the final
model is better. The dotted line in the figure is the area where
the optimal delay is brightened. The results are basically the
same, which can accurately replace the simulator in railway
network optimization adjustments.
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Fig.5. The projection map of prediction results

B. Scene 2

When four of the trains entered the area were delayed, train
1265 was in the late range of Shenyang North Station (50,70),
train 1241 was in the late range of Shenyang North Station
(45,65), and train 1205 was in the late range of Shenyang North
Station (30,50), train 1237 is in the late range of Shenyang North
Station (15,35). To verify the accuracy of the model, the four
delayed real target value of all the train delays is obtained by the
simulator, a total of 198841 sample data, the minimum value of
the delay increment is 18. 5929 sample data are uniformly
sampled, and the model is updated 36 times through active
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learning. The final output of the surrogate model and the real
simulator output are shown in Figure 6. It can be seen that the
surrogate model predicts the results near all minimums
unanimously.
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Fig.6. The comparison diagram

The changes in the root mean square error (RMSE) of the
model during the iteration process are shown in Figure 7, and
the change in the minimum value of the delay increment
predicted by the model output is shown in Figure 8.

RMSE = \/%Zé\,:l(Fi(Li) — L;)*? (16)

5 10 15 20 25 30 35 40
The Number of Iterations

Fig.7. RMSE of the model during the process
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Fig.8. The change of difference by actual and forecast of the
increment delay

With the active learning of the model, the overall error of the
model prediction data is shrinking. At the same time, the
minimum delay increment predicted by the model is gradually
approaching the true minimum delay increment. The final
minimum delay increment predicted by the model is 17.1, but
the position of the minimum delay increment predicted by the
model is consistent with the real data, which can ensure that we
get the optimal delay vector in the optimization process.
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When we use the Gauss Process model without active
learning(AL), we can obtain the same consequence compared
with the active learning model, though, the number of samples
and the time to build the model will be very different. The
comparison results are shown in the following table 1. The
distance represents difference between the optimal solution
position of the prediction model and the actual optimal solution.
From the table, we can see that it takes more time without AL if
we want to get the same consequence.

TABLE 1. MODEL COMPARISON
Model Index
Type The number of samples Time Distance
With AL 5964 119.28 hours 0
Without AL 8549 170.98 hours 0

Therefore, the surrogate model with active learning can have
higher prediction accuracy near the optimal position and can
reduce the cost of simulation calculations significantly.

CONCLUSION

We propose a surrogate model of an active learning strategy
to replace the simulation evaluation of the simulator, which
effectively reduces the cost of simulation, and lays the
foundation for the next adjustment of train operation in the
railway network. The active learning strategy adopted in this
paper makes the prediction results around the best points more
accurate to ensure the adjustment of train operation in the
railway network, but the accuracy of all prediction data cannot
be guaranteed. Therefore, the active learning strategy still needs
further improvement.
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